

# INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

## AERONAUTICAL ENGINEERING

# ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

| Name of the faculty: | G Sravanthi      | Department:   | Aeronautical<br>Engineering |  |
|----------------------|------------------|---------------|-----------------------------|--|
| Regulation:          | R16              | Batch:        | 2017-2021                   |  |
| Course Name:         | Space Propulsion | Course Code:  | AAE012                      |  |
| Semester:            | VI               | Target Value: | 70% (1.8)                   |  |

#### **Attainment of COs:**

| Course Outcome |                                                                                                                                                       | Direct<br>attainment | Indirect<br>attainment | Overall attainment | Observation                   |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|--------------------|-------------------------------|
| CO1            | Estimate launch dynamics parameters using orbital transfer and trajectorial pertubation for calculating orbit placement propulsion weight.            | 3.0                  | 1.6                    | 2.7                | Attainment target reached     |
| CO2            | Make use of rocket equation and fundamental principles for designing static test bed of rockets                                                       | 3.0                  | 1.6                    | 2.7                | Attainment target reached     |
| CO3            | Design solid rocket motor propellant grain<br>for optimizing proper burn rate requirement<br>as per mission profile                                   | 1.6                  | 1.6                    | 1.6                | Attainment target not reached |
| CO4            | Classify solid rocket motor burn pattern for solving combustion instability in erosive burning                                                        | 0.0                  | 1.6                    | 0.3                | Attainment target not reached |
| CO5            | Distinguish liquid, cryogenic and hybrid rocket systems for selecting optimal rocket propulsion system in deep space missions                         | 2.1                  | 1.6                    | 2                  | Attainment target reached     |
| CO6            | Illustrate advanced propulsion techniques<br>for explaining fuel utility mitigation in long<br>overhaul mission involving select board<br>refuelling. | 1.4                  | 1.6                    | 1.4                | Attainment target not reached |

### Action taken report:

CO 3: Remedial classes have been conducted.

CO 4: Digital content and videos given in classes for better understanding of concept.

CO 6: Minor modification of syllabus may be required for attainment.

Course Coordinator

Mentor

Head of the Depart
Aeronautical E

Dundigal, Hydan